presented too much like fact for my liking. Charles Dawson, the discover of the Piltdown Man, had the means and opportunity to create the Piltdown remains and is probably guilty. While some of his colleagues suspected him, most thought he was too honest and open a man to have perpetrated a major scientific fraud. In fact, Piltdown Man was not his first. There is good evidence that he created and pressed on the British historical and scientific communities other “missing links,” among them transitional forms of a horse shoe and an iron Roman sculpture. He was also an accomplished plagiarist who cobbled together books and scientific papers from the work of others. Most of Dawson’s writings were definitely shown to be stolen, but unfortunately Walsh seems compelled to present a black-and-white case. The originality of 1 Dawson publication, on a tapestry, has not been examined, but Walsh concludes “it may in fact represent that extremely scarce commodity, original, undervigil work by Dawson. After all, there seems no good reason why a forger and plagiarist might not, now and then, have a genuine flash of inspiration. Still, common sense counsels otherwise.”

In refusing to acknowledge that any of Dawson’s work could have been original, Walsh himself ignores what he calls “the responsibility of those who set out not to just express an opinion but to induce us to call it truth.” In science there is no truth and no “common sense”; there are only data to support or refute hypotheses. Dawson’s previous forgeries and plagiarisms cannot be accepted as evidence of his forging the tapestry manuscript or the Piltdown remains. At best, his past suggests a pattern into which the Piltdown forgery may fit. At any rate, no more tar is needed to blacken his reputation.

We can compare Walsh’s conclusions about Dawson with the scientific community’s treatment of Robert Slutsky. Commonly regarded as one of modern medicine’s most prolific plagiarists, Slutsky was a cardiologist who published 137 medical papers in 7 years, a rate of 1 paper every 19 days. When some of the papers were questioned, a faculty committee at Slutsky’s institution examined each of his papers and reported not that all of his work must be fraudulent, but that 12 papers are fraudulent, 48 are questionable, and 77 are valid.

Cynics may say that such caution is more a result of fear of litigation than professional ethics, but I think it is an example of scientists thinking like scientists: examining each piece of data and arriving at not “the truth” but a theory. However, in some ways, it goes against human nature to say that someone has plagiarized X number of papers; we would rather say he is a jerk. In Unraveling Piltdown, Walsh has presented several examples, including his own, of how enthusiastic amateur detectives can unwittingly accuse the innocent (and even the guilty) of crimes they did not commit.

Maureen E Goode

Maureen E Goode is an editor in the Department of Scientific Publications at The University of Texas M. D. Anderson Cancer Center and managing editor of the journal Molecular Carcinogenesis.

The Borrowed Image

Question: The Borrowed Image
As a multimedia coordinator for a presentation at a national meeting session on gene function, you note a person outside the presenting scientist’s view on the other side of the podium near the door photographing some of the slides of chromosome repair as they are shown on the screen. During the question period, you approach the bystander who took the photographs and query his motives. He is surprised and states that 1) he plans to use the photos as evidence to support his own results and 2) because this is a public meeting, he refuses to ask the presenter for permission for such use or even to inform the presenter that he has taken the photographs. You feel this is not quite right—what steps can you or should you take in this situation? (CBE Views 1996:19(4):93)

Solutions:
In the atmosphere of a conference or meeting, the general goal is to exchange information in the effort to promote research on whatever subject the meeting is about. In this context, the information presented, either in a talk or on a poster, is being given freely for others to examine. Lately, it is even customary to summarize the information contained on a poster in handouts. Taking photographs, then, is just another way of “seeing” the data, which may already be available in handouts. However, if the data are being used in a paper, or in any way referenced, that work should be cited by mentioning the talk or poster session. In this scenario, I would remind the bystander taking the photographs about this obligation, and I
would probably alert the speaker to his presence so they could confer later.

When slides are photographed during such a talk, this is being done in the context of a meeting of researchers. In the conference setting described, anyone who had data they did not want anyone else to see (for example, because they were getting ready to send in a grant proposal on the work) would probably not present it. If these were scientists working on high-level trade secrets in a private company, the information would probably not be shown in the first place. However, in all cases, if the data are to be used or cited, it is proper to reference the work. Omitting the reference is considered very bad form.

Laurie M Craise
Medical Technologist
National Aeronautics & Space Agency
Houston, Texas

New Question: Use of a Photograph of You—is It Legal?
At a local dinner meeting of your professional society, a software vendor has been invited to give a demonstration of a product during the networking session, and you spend some time trying it out. When you receive a copy of the society newsletter later that month, you are somewhat disconcerted to see a photograph of yourself at the keyboard; you had not realized your picture was being taken at the time and were not especially pleased with the product anyway. Shortly after, you discover incidentally that the society has just set up a Web site and that it plans to provide access to issues of its newsletter, beginning with that issue. You are now mildly uncomfortable with the thought that your photo is going to be put up on the Internet with universal access and that still no one has consulted you. You are concerned not only that the vendor might want to download this image for advertising purposes without your endorsement but that your name will appear under the photograph, and you could inadvertently become, at least, the recipient of all the unsolicited junk mail one receives when signing on to the Internet. You feel it is simply too public and wish to withdraw permission to include your photograph, but since your permission was never requested—how should you proceed?

Lila N Schwartz
Scientific Editor
Oakland, California

Please send responses to the new question by 15 March 1997 to Della Mundy, Kaiser Foundation Research Institute, Department of Medical Editing, 1800 Harrison Street, 16th Floor, Oakland CA 94612-3429; telephone: 510-987-3573; fax: 510-873-5131; e-mail: della.mundy@ncal.kaiserperman.org.

Role of Editors on the Web

Webmaster???

For my job and, I expect, for the jobs of most biology editors, the quick transfer of skills to Internet publishing is a done deal. If we are not already publishing electronically, we are expected to be able to do so if the need arises. So the question arises as to what this involves and whether such transfer is reasonable.

At the same time, when I hear the term Webmaster, I think of computer gurus—those infamous children who can create a software program or access a checking account with equal ease. Well, of course, that picture isn't accurate. But what does a webmaster do? How do the tasks differ when those editors publish on the Web?

According to WebWorker (1), which reported 72 responses to their survey asking a version of that question, Webmaster duties in order of frequency were as follows:

NET RESULTS

EDITED BY SALLY EDWARDS

CBE Views • Vol. 20, Nr 1, 1997 • 25