Science Writers Write How-to Book

A Field Guide for Science Writers.
Deborah Blum and Mary Knudson, editors.

A fledgling science writer, I welcome the chance to hear from more experienced colleagues. Therefore, I was delighted to read A Field Guide for Science Writers. For this official project of the National Association of Science Writers, Deborah Blum and Mary Knudson tapped more than 30 writers across the United States. Each chapter is a science writer’s thoughts and tips about some aspect of science writing, from interpreting statistics to writing 100-second television spots, from researching a subject to telling a good tale.

The 1st of the book’s 4 parts gives an overview of science writing. Writers use their own experiences to illustrate how medium and audience affect story development. For example, in assessing the potential of a topic, a newspaper journalist includes fascination value and timeliness. For a magazine writer, the next step, pitching the story, involves a query letter in which a captivating lead helps to show what the writer plans to cover, why the magazine’s readers would be interested, and why the writer should be commissioned. Once a piece has been assigned, research time varies—from as little as a few hours for newspaper and broadcast journalists to years for book authors.

Part 2 contains tips for any beginning science writer: what to know about basic statistics, how to tell a good tale, how to use journals for story ideas and background, where to look for additional information, what to keep in mind while writing an op-ed piece.

In part 3, writers who specialize in particular fields of science communication highlight aspects peculiar to those fields. For example, a physics writer describes how he meets the challenge of making understandable size comparisons of objects ranging from subatomic particles to the accelerators used to study them. A newspaper health editor shows how public-health topics are shaped in part by considerations of political power and money. Writers give practical advice, such as about the homework required to cover infectious diseases and who might become the most important source for covering an epidemic.

The longer chapters of the book’s 4th part cover science writing in settings outside the mass media. Here we learn that, whereas science reporters view themselves as members of the journalism community, university science writers are, first, members of the university and scientific communities. As such, they must be familiar with current research in various laboratories, with the needs of science reporters who cover that research for the public, and with the concerns of the scientists conducting the research. In this section we also find tips on how to cope with the multiple layers of editing in government agencies. One chapter highlights the chance to work with a variety of media and subjects when writing for drug and medical businesses. A balanced portrayal, the chapter also points out drawbacks of providing a writing service, such as ethical conflicts and constant rescheduling. Some chapters suggest ways to begin working outside the media.

[W]hereas science reporters view themselves as members of the journalism community, university science writers are, first, members of the university and scientific communities.

The appendix to A Field Guide for Science Writers contains a well-organized list of selected books, periodicals, organizations, and meetings that new science writers can refer to as they get started in their careers. For people interested in doing coursework in science writing, a list of “better known” science-communication programs in the United States includes the names, postal and e-mail addresses, and telephone numbers of contact persons. And finally, the appendix lists Internet sources, including listservs, university telephone books, journal home pages, and science media sites.

A Field Guide for Science Writers shows how science writers approach problems and how numerous styles and tones can effectively communicate the solutions. Equally interesting to a new science writer will be the paths that the contributing writers followed in their careers, as outlined in the sketches at the beginnings of chapters. The downside of the use of so many styles is that the book is somewhat disjointed. However, the chapters have remarkably little overlap in content, considering the number of contributors. Any writer venturing into a new field of science writing will benefit from the insights and practical advice in A Field Guide for Science Writers. For an aspiring science writer the whole book will be valuable. Section 2 will be useful for the experienced science writer considering a career change, perhaps from biology to environmental science or from newspaper to industry. And anyone can read this book and come away with an appreciation of what science writers do, how much work goes into getting it done, and how passionate they are about their responsibility to write clear, balanced, and, above all, truthful stories.

Arkady Mak

Arkady Mak was a physician and scientist (PhD, biochemistry) before becoming a full-time freelance biomedical editor and writer.

Correction

In “Usage, Grammar, and Evolving Language” (CBE Views 1997;20(1):17), the correct name of the recommended book by Edward MacNeal is Morphology: Making Numbers Talk Sense.